Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The availability of the micronutrient iron is important in regulating phytoplankton growth across much of the world’s oceans, particularly in the high-nutrient, low-chlorophyll regions. Compared to known mechanisms of iron acquisition and conservation in autotrophic protists (e.g. diatoms), those of dinoflagellates remain unclear, despite their frequent presence in offshore iron-limited waters. Here, we investigate the strategies of an ecologically important mixotrophic dinoflagellate to coping with low iron conditions. Coupled gene expression and physiological responses as a function of iron availability were examined in oceanic and coastal strains of the dinoflagellate Karlodinium. Under iron-replete conditions, grazing was only detected in coastal variants, resulting in faster growth rates compared to when grown autotrophically. Under iron-limited conditions, all isolates exhibited slower growth rates, reduced photosynthetic efficiencies, and lower cellular iron quotas than in iron-replete conditions. However, oceanic isolates exhibited higher relative growth rates compared to coastal isolates under similar low iron concentrations, suggesting they are better adapted to coping under iron limitation. Yet the oceanic isolates did not exhibit the ability to appreciably reduce cell volume or increase iron-use efficiencies compared to the coastal isolates to cope with iron limitation, as often observed in oceanic diatoms. Rather, molecular pathway analysis and corresponding gene expression patterns suggest that oceanic Karlodinium utilizes a high-affinity iron uptake system when iron is low. Our findings reveal cellular mechanisms by which dinoflagellates have adapted to low iron conditions, further shedding light on how they potentially survive in variable iron regions of the world’s oceans.more » « less
-
Abstract Coastal upwelling currents such as the California Current System (CCS) comprise some of the most productive biological systems on the planet. Diatoms dominate these upwelling events in part due to their rapid response to nutrient entrainment. In this region, they may also be limited by the micronutrient iron (Fe), an important trace element primarily involved in photosynthesis and nitrogen assimilation. The mechanisms behind how diatoms physiologically acclimate to the different stages of the upwelling conveyor belt cycle remain largely uncharacterized. Here, we explore their physiological and metatranscriptomic response to the upwelling cycle with respect to the Fe limitation mosaic that exists in the CCS. Subsurface, natural plankton assemblages that would potentially seed surface blooms were examined over wide and narrow shelf regions. The initial biomass and physiological state of the phytoplankton community had a large impact on the overall response to simulated upwelling. Following on‐deck incubations under varying Fe physiological states, our results suggest that diatoms quickly dominated the blooms by “frontloading” nitrogen assimilation genes prior to upwelling. However, diatoms subjected to induced Fe limitation exhibited reductions in carbon and nitrogen uptake and decreasing biomass accumulation. Simultaneously, they exhibited a distinct gene expression response which included increased expression of Fe‐starvation induced proteins and decreased expression of nitrogen assimilation and photosynthesis genes. These findings may have significant implications for upwelling events in future oceans, where changes in ocean conditions are projected to amplify the gradient of Fe limitation in coastal upwelling regions.more » « less
-
Abstract Diatom community composition has a critical influence on global ocean health and ecological processes. Developing accurate and efficient methods for diatom identification under dynamic environmental conditions is essential to understanding the implications of diatom community changes. Two developing methods for identifying and enumerating phytoplankton, cell imaging and molecular sequencing, are experiencing rapid advancements. This study aims to compare diatom taxonomic composition results within natural assemblages derived from rapidly advancing methods, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene, with traditional light microscopy cell counting techniques. All three methods were implemented in tandem to analyze changes in dynamic diatom assemblages within simulated upwelling experiments conducted in the California upwelling zone. The results of this study indicate that, summed across all samples, DNA sequencing detected four times as many genera as morphology‐based methods, thus supporting previous findings that DNA sequencing is the most powerful method for analyzing species richness. Results indicate that all three methods returned comparable relative abundance for the most abundant genera. However, the three methods did not return comparable absolute abundance, primarily due to barriers in deriving quantities in equal units. Overall, this study indicates that at the semi‐quantitative level of relative abundance measurements, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene yield comparable results with light microscopy but at the qualitative and quantitative levels, enumeration metrics diverge, and thus method selection and cross‐method comparison should be performed with caution.more » « less
An official website of the United States government
